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STRESS-STRA IN STATES IN A MULTISHEET SURFACE WI TH CUTS* 

V.V. SIL'VESTROV 

The first, second and mixed fundamental boundary-value problems of 
elasticity theory are considered on an n-sheet Riemann surface with 
straight-line cuts joining the branch points. The cuts are such that 
their edges are situated in different planes. Complex potentials are 
constructed, asymptotic representations of the stresses and derivatives 
of the displacement components are obtained near the vertices of the 
cuts and invariant I- integrals /l/ are obtained, by the method of 
reduction to a matrix Riemann boundary-value problem. 

The first and second fundamental problems for an n=2 Riemann 
surface were solved /2/ by the Riemann boundary-value problem method for 
a Riemann surface. For n= 1 the results are identical with previously 
known results for a plane /3/. 

1. Statement of the probtem. Suppose we have n identical thin homogeneous isotropic . . . . 
elastic infinite plates E,,E& . . . . E,, of the same thickness and with cuts along the same 
intervals 1, = [a,, b,] (j = 1, 2, . . ., m) along the real x axis superimposed on one another so 
that, for all the plates, cuts with the same numbers are placed above one other. The lower 
edges of the plate Ex are glued to the corresponding upper edges of plate EK+l (k = 1, 2, . . ., 
n - 1). The upper edges of the cuts of El and the lower edges of E, are not glued together. 
We shall denote them by L+ and L- respectively. If one takes a section perpendicular to 
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the plates Er and perpendicularly intersecting one of the cuts 

lJ* then the resulting system will appear as in the figure. It 
is an n-sheeted Riemann surface for the algebraic function 

with boundary L+ U L-. If the edges L+ and L- are imagined 
as being glued together, i.e. identical, then we would obtain a 
closed Riemann surface R for the function (1.1). On this surface 
L+ and L- are the edges of three-dimensional cuts with ends at 
the branch phints z = al and z = bj of the surface. 

Suppose all the sheets of the surface are in a generalized plane stressed state, charac- 
terized by the following conditions. 

1. The stresses and displacements change continuously across the gluing Lines of the 
sheets, while on the unglued edges L+ and L- either the normal and shear stresses a,+, QV+ 
and oy-9 7,; (the first fundamental problem on the surface RI are specified, or the partial 
derivtives with respect to x of the displacement components (u',v')+ and (u', v')_ are 
specified (the second fundamental problem), or c.y+, Gcy+ are specified on L+ and (111, v')_ 
are specified on L- (mixed fundamental problem). The specified boundary conditions of the 
stresses and displacement component derivatives will be assumed to be H-continuous, and in 
the second problem 

j,[(u' + iu')+-((u' + iv')-Ids = 0, j = 1,2,.. ., m. (1.2) 

because the displacement increment along the upper edge of cut lj on the plate E, is equal 
to the displacement increment along the lower edge of the same cut on the plate E,. 

2. At the ends of the intervals I,, i.e. at the branch points of the surface, the 
stress and displacement derivatives can have infinities of order less than unity, while at 
the remaining points of the intervals they are continuous. 

3. At 00 on the plates Ek (k = 1,2, . . . . n) the stresses are uniformly distributed and 
here the principal stresses (u& and (o& make angles q)k and (Pk + n/2 respectively 
with the real axis. The rotation of the plate Ek at co is equal to ok. 

4. The three-dimensional effect of the stress concentration at the joints of the sheets 
is assumed to be negligibly small. 

Under these conditions the stresses (u,, uyr ~,,,)k and the x-derivatives of the displacement 
components (u', v')~ in plate El, are expressed in terms of two functions @k(z), Yk(z) by the 
formulae /3/ 

(ox + a& = 4Re (& (z) 

(av - i.r,,h. emu 'pi; (z) -!- n, (Z) + (z - f) Q)k' (z) 

211 (u' + iV')k = XQ, (z) - Bk (f) - (z - f) Q)K' (z) 

R, (z) = &ix (z) + ZG,,' (z) $ Fk (z) 

(1.3) 

(1.4) 

where u is the shear modulus, x == (3 -v)i(l -Fv), and Y is Poisson's ratio, which are the 
same for all the plates. The functions mk, 9, are analytic and single-valued in the E, 

plane with cuts 1, (j : 1,2, . .., m), and in the neighbourhood of 00 have the form 

@g(z) = Ye - zn(;;x) f + o(a-7 (1.5) 

xp, 
G(z) = Vr' + 2x(11 ix) -+ + o(z-7 

1 Zip 
Yr = 7 (a, + %h + l+x "k? h' = Yr + +(~2--o,hex~(2~~d 

where -Pk = -(X, + iY,) is the total force applied to the collection of cuts Zj (j = 1,2, . . . . 
m) from the side of plate Ek. We assume that the Px (k = 1,2, . . . . n)have been specified, and 
that for the first problem these numbers and the specified boundary conditions on the stress 
satisfy the equilibrium condition for the surface R: 
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At the ends of the intervals 2, the functions O'r, 8, can have infinities of order 
less than unity, while at the other points of the intervals they have continuous boundary 
values. Furthermore, we suppose that at all points tE 1, except at the ends 

(2 - r) Qk (2) --f 0 for Z-tP (1.7) 

In the problems considered below this condition is satisfied as a consequence of the H- 
continuity of the specified boundary conditions. 

Using (1.3), (1.7) the boundary conditions on the edges L+, L- can be written in a 
unified form for all the problems (L is the set of all intervals zj, (1 = 1, 2, . . .) m)): 

PA+ (t) + Q,- (t) = fi w, P&c (t) + a+ (t) = fi (t), t E L (1.8) 

Here, in the first problem, 

P1 = Pz = 1, fi = bY - QJ+, fz = by - &J 
In the second problem 

Pi = Pz = -x, fl = -21 (u’ + id)+, fz = -2p (u’ + iv’)- 

In the mixed problem 

Pi = 1, Pz = -% f, = (a, - i&J+, fz = -2P (a' + iv')- 

the continuity of the stresses and displacements along the glue lines of the sheets is 
described by 

Q)k- (Q + 52x+ (t) = @':+1 (t) + a,+, (t) 

x@,- (t) - op+ (t) =‘a:+, (t) - 52brl (t), t E L, k = 1, 2, . . . , 
.n - 1 

whence 

q- (t) = @:+I (t), q+ (t) = S,+,(t), t E L, k = 1, 2, . . ,n - 1 (f.9) 
Thus to find the functions Q)r, 51, (k = 1,2, . . . . n) we have a Riemann matrix boundary- 

value problem (1.8), (1.9) which we write in the form 

@' (t) = A@- (t) + f (t), t E L (1.10) 

where m(z) is an unknown piecewise-holomorphic vector function of order 2n with components 
@'I, %, . . ., %, Qi, Q2, * . ., Qn; f WI is a vector function of order 2n with components fJP** 
0, 0, . . ., 0, fi; A = (Aki) is a matrix of order 2n X 2n in which all the elements are zero 
except AI, n+~ = -l/p,, Ak,b-I = 1, k = 2, 3, . . ., n, Ar, )i+t = 1, k = n + 1, n + 2, . . ., 2n - 1, AZ”, n = 

-Pz. The function CD(z) can have infinities of order less than unity at the ends of the 
lines of L, while from (1.5) it has the form 

4, (z) = G + Hz-’ + 0 (z-3 (1.11) 

in a neighbourhood of w, G and 2n(l + n)H being 2n-dimensional vectors with components 
YiY YZY . . ,Yn, Yl’, Yz’, . . ., Yn’ and --P,, -Pz, . . . . -P,, xP,,xP,, . . ., xP, respectively, and 
0 (z-2) is a vector function all of whose components are comparable with z-z at large 2. 

2. Sob&ion of the p~o~tenr. We denote the eigenvalue of the matrix A by h, (k = 1,2, . . . . 
2n) , while S is a matrix whose columns are the eigenvectors of A. We straightforwardly find 
that for the first and second problems 

h, = exp [in (k - 1)/n], k = 1, 2, . ., 2n (2.1) 

and for the mixed problem 

h, = XI/~" exp [in (2k - 1)/(2n)l 

while for S = (Skj) we can take the matrix with elements. 

Skj = hi-“, k = 1, 2, . ., n, Skj = -p&-", k = 

n j 1, n + 2, .( 2n 
(2.2) 

Then /4/ the matrix SmlAS is d' iagonal with diagonal elements A,,&, . . . . &,. Searching 
for Q (z) in the form a(z) = SF(z) where F (z) is a new unknown vector function with com- 
ponents F,,F,, . . ., F,,, we obtain from (1.10) 

Fk+ (t) = A$,- (t) + g, (t), t E L, k = 1, 2, . ., 2n (2.3) 

where the g, are the components of the vector function S-Y(t). At the ends of the lines of 
L the functions F, can have infinities of order less than unity, while in the neighbourhood 
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of infinity (1.11) gives 

F (z) = (FK) = S-W = S-'G + S-‘Hz-’ + 0 (z-“) 

According to /5/, the solutions of (2.3) are the functions 

I--b., I , k=1,2 I..., 2n 

(2.4) 

(2.5) 

where for the first and second problems ak = (k - I)/&) and p = 0, while for the mixed 
problem ak = (2k - 1)/&z) and i3 = (In x)/(4nn). Here X, (z) is to be understood as the branch 
that is single-valued in the plane with cuts along the lines L and such that z"'Xk(z)+l as 
z*m. In the first and second problems we must put 

X, (2) = 1, C,, = c12 = . . . = e,, = 0 cm 
because h, = 1. 

Using (2.6) in (2.4) and (2.5), we find that in the first and second problems the vector 
with components clO, Q,,,, es,,,, . . ., cZn,m is equal to S-'G, while the vector with components 

- (lg, (t) dt) / (2347 ck, m-1 + qk+,,,l k = 2,3, . . ., 2n 

(qk = (ak - LB) (ui + a, + . . . + 6) -t 
(1 - ak + $4 (b, + bz + . . . + bd) 

is equal to S-‘H. The fact that the quantity - (Sg&)lW) is equal to the first component 

of the vector S-‘H follows in the first problem from condition (1.6), and in the second 
problem from conditions (1.2). In the mixed problem we find from (2.4) and (2.5) that 

(Ckm)k=l, 2, . . . . 2” = S-W, (ck, m-1 + ‘?kCk,,,)k=l, 2, ,_., zn = S-IH 

where qk is found from the same formulae as for the first and second problems. 
Consequently, if the number of cuts m = 1 all the constants Ckj are defined. If 

m> 1, then to determine the remaining contants crI in the first problem one must require 
the increment of the displacements along a closed curve consisting of the edges of the cuts 
Zj (j = 1, 2, . . ., m - 1) on each plate E,(k = 1,2, . . . . n) to vanish and the increment of 
the displacements along the interval [bj,aj+,] (j = 1,2, . . . . m - 1) on the plate El to be 
equal to the increment of the displacement along the same interval of the plate Ex (k = 2, 
3 ,...1 4. Then 

Vzl @Sk, + Sk+“, .) s, [Fv+ (t)‘- F.,- (t)] dt = 0, k = 1,2,...,n (2.7) 

j=i,2 ,...,m-1 

~~[.(Sl~-SSxu)fS.+n.v-Sn+l.*l=~Fv(t)df=O, k = 2,3,...,n (2.3) 
bJ 

j=1,2 ,.,.,m-1 

Substituting the values of FI, into these equations, we obtain a system of (2n - f)(m -1) 
linear algebraic equations to determine the remaining (2n- l)(m - 1) constants Ckj (k = 2, 
3 , . .., 2n; j = 0,1, . . ., m - 2), unique solvability being proved by the usual methods /3/. 

In the second problem one of the qroup of conditions (2.7). for example for k = I. is 
a consequence of the remaining conditions Hnd conditions (1.2) hence instead of them one 
should set an additional m - 1 conditions. They can be obtained if the differences of the 
displacements of the points bI and a~+~. Then 

V,l(&--s 

9+1 

n+l,V) 5 FV(W = 
bl 

2p[u(~+~)+ i~(a~+~)- u (b,)iu(b,)], j = 1,2, . . . . m- 1 

(2.9) 
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Instead of the differences of the displacements of points b, and aI+1 one can also 
specify the total external force vector acting on the I,+ side in plate E, or the l)- side 
in plate E,, or on the combined sides l,+ in E, and l,- in E,. Then for each j (j = 1,2, . . . . 
m - 1) one of the following conditions should be satisfied: 

LF; (t) + &,a, vF,+ Ml& = - iQjn (2.11) 

zl ,s [(s,, - s,,, v) Fv+ (t) + (&+I, v - S,V) Fv- @)I dt = ~QI (2.12) 

f 

where QJ,, QJ,, and QJ = QJ, + QJ,, are the total vectors of external forces acting respectively 
on the 1,' side in E,, on the I,- side in E,, and on the combined sides 1,’ in E, and 
1~~ in E,. Conditions (2.7), where k = 2,3, . . . . n, (2.8) and one of conditions (2.9)- 
(2.12) for each j form a uniquely solvable system of (2n - I)( m- 1) equations to determine 
the remaining (2n - i)(m- 1) unknown COnStaIItS ckJ- 

In the mixed problem, to determine the 2n(m - 1) constants ckJ (k = 1,2, . . . . 2n; j = 0, 
1 
(2X;: 

m - 2) one must take conditions 12.7), (2.8) and for each j one of conditions (2.9)- 

3. Behavicur of the stress and dispZacement near the ends of the cuts. Invariant r- 
integraZs . For the first and second problems the functions Fk(z) near the point z = b, 
have the form /5/ 

F, (z) = 0 (In 1 z - bj I) (3.1) 

FL (2) = DkJ (Z - bJ)ak-“fB, k = 2, 3, . . ., 2n (3.2) 

Dkj = qkj tbJ) (& $$y e $- 2 CkvbjY) 

qkj (z) = Xk (z) (z - bj)1-ak+“8 

where ak = (k- 1)/(2n), B =O, the functions Xk, gk and the numbers CkV are determined in 
Sect.2, while (z - bj)ak-l-iB are single-valued branches in the plane with a cut along the ray 
(-m, b,] of the real axis, taking the value 1 at a - b, = 1. The integral in (3.3) is improper. 

In the mixed problem all the functions Fkr including F1, have the form (3.2), where 
ak = (2k - 1)/(4n) and p = (In x)l($nn). 

Because the vector function 0(z) with components @,,& . . . . @,,. i&,9,, ., ., 61, is 
equal to SF (z), from (1.3), (3.1) and (3.2) we obtain for the first and second problems the 
following asymptotic representations of the stresses and displacement derivatives near the 
point z = b, in the plane El, (k = 1.2, . . . . n): 

(0% -t uy)k = 4 Re (“gz SkvDvjWvj (2)) + 0 (In r) (3.4) 

(a, + $1 $kv&J (1 - (2 - bJY(z-_b,)) al) + 0 (lnr) 

r=Iz-bjI, <ovJ (z) = (z - bj)ak-l-iB, c..c~ = (k - 1)/(2n), fi = 0 

The constants S,J and D,J are given by formulae (2.1), (Z.i), and (2.3), respectively, 
for the mixed problem all the sums over v in these representations must be taken from 1 to 
272, and we must put ak = (2k - 1)/(4n) and p = (ln x)l(4nn). In order to obtain representations 
near the point z = a, on the plate Ek, one must replace bJ with aJ and cck - 1 - ifi 
with ip - ak in formulae (3.1)-(3.4). 

For the n = 1 case of (3.4) we obtain previously known representations of stresses and 
displacement derivatives near the vertices of cracks and rigid sharp-angled inclusions /6/ by 
denoting the constant 21/&DzJ by k, - ikz (k, and k, being coefficients of the stress 
intensity). 

For the first and second problems we compute the invariant r-integral of the first 
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kind /l/ along a curve consisting of n identical circles A of small radius r(r< 1) with 
centres at the points z = bj, positioned on the plates E,(k = 1,2, . . . . n). Consistent with 
formula (2.7), from /7/ we have, using relation (1.4), 

r_r,+ir,=Lp - ~(jC&(~)~~(z)dz-Rne j@,$(z)dz) 
x=1 A A 

Because 

then using (3.1), (3.2) and integrating using polar coordinates given 

8 < n, we find 

z - b, = &‘, --n < 

(3.5jt 

the D,, are defined 

rl=,_nn(x+Upl 
P 

Re (8 ein(v-l)lnDvjBzn+2-v, j) 

where pi = 1 in the first problem and p, = --x in the second, while 

by formulae (3.3). The pz component has the form 

rz = E0 + ~,r-11(2~13 T &2/(2n) + . . . + g2,_,r-W-W@n) 

where the Ek are some generally non-zero constants. 
For n=l, denoting 21/2-p& by k, - ik,, we obtain from (3.5) the well-known 

formula /l/ 

rl = Re I? = (x + 1) (ki2 + k,2)/(8pp,\ 

where in the first problem p, = 1 and in the second pi = --x. 

I wish to thank D.D. Ivlev for his interest. 
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