I would like to acknowledge the useful comments of A.G. Kulikovskii, E.I. Sveshnikova and A.A. Barmin.

REFERENCES

1. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Non-linear waves in weakly anisotropic elastic media, PMM, 52, 1, 1988.
2. BLAND D.R., Non-linear Dynamic Elasticity Theory, Mir, Moscow, 1972.
3. SVESHNIKOVA E.I., Simple waves in a non-linear elastic medium, PMM, 46, 4, 1982.
4. KULIKOVSKII A.G., On equations desribing the propagation of non-linear quasitransverse waves in a weakly anisotropic elastic body, PMM, 50, 4, 1986.
5. KULIKOVSKII A.G. and SVESHNIKOVA E.I., On shock waves propagating in a stressed state in isotropic non-linear elastic media, PMM, 44, 3, 1980.
6. KULIKOVSKII A.G. and SVESHNIKOVA E.I., Investigation of the shock adiabatic of quasitransverse shock waves in a prestressed elastic medium, PMM, 46, 5, 1982.
7. PUSHKAR E.A., on skew magnetohydrodynamic shock waves, Izv. Akad. Nauk SSSR, MZhG, $4,1978$.
8. PUSHKAR E.A., Generalization of the polar of plane-polarized stationary selfsimilar flows in magnetogydrodynamics, Izv. Akad. Nauk SSSR, MZhG, 3, 1979.
9. BARMIN A.A. and PUSHKAR E.A., Stationary magnetohydrodynamic flow past a non-conducting wedge, in: Problems of Modern Mechanics, Izd. MGU, Moscow, 2, 1983.
10. BURENIN A.A., LAPYGIN V.V. and CHERNYSHOV A.D., Solving plane selfsimilar problems of the non-linear theory of dynamic elasticity, in: Non-linear Deformation Waves, Proceedings of a symposium, Inst. Kiber. Akad. Nauk EstSSR, Tallin, 2, 1978.

STRESS-STRAIN STATES IN A MULTISHEET SURFACE WITH CUTS*

V.V. SIL'VESTROV

The first, second and mixed fundamental boundary-value problems of elasticity theory are considered on an n-sheet Riemann surface with straight-line cuts joining the branch points. The cuts are such that their edges are situated in different planes. Complex potentials are constructed, asymptotic representations of the stresses and derivatives of the displacement components are obtained near the vertices of the cuts and invariant Γ - integrals /l/ are obtained, by the method of reduction to a matrix Riemann boundary-value problem.

The first and second fundamental problems for an $n=2$ Riemann surface were solved $/ 2$ / by the Riemann boundary-value problem method for a Riemann surface. For $n=1$ the results are identical with previously known results for a plane /3/.

1. Statement of the problem. Suppose we have n identical thin homogeneous isotropic elastic infinite plates $E_{1}, E_{2}, \ldots, E_{n}$ of the same thickness and with cuts along the same intervals $l_{j}=\left[a_{j}, b_{j}\right](j=1,2, \ldots, m)$ along the real x axis superimposed on one another so that, for all the plates, cuts with the same numbers are placed above one other. The lower edges of the plate E_{k} are glued to the corresponding upper edges of plate $E_{K+1}(k=1,2, \ldots$, $n-1$). The upper edges of the cuts of E_{1} and the lower edges of E_{n} are not glued together. We shall denote them by L^{+}and L^{-}respectively. If one takes a section perpendicular to

[^0]
the plates E_{k} and perpendicularly intersecting one of the cuts l_{j}, then the resulting system will appear as in the figure. It is an n-sheeted Riemann surface for the algebraic function
\[

$$
\begin{equation*}
w=\left(\prod_{j=1}^{m} \frac{z-a_{j}}{z-b_{j}}\right)^{1 / n}, \quad z=x+i y \tag{1.1}
\end{equation*}
$$

\]

with boundary $L^{+} \cup L^{-}$. If the edges L^{+}and L^{-}are imagined as being glued together, i.e. identical, then we would obtain a closed Riemann surface R for the function (1.1). On this surface L^{+}and L^{-}, are the edges of three-dimensional cuts with ends at the branch points $z=a_{j}$ and $z=b_{\text {; }}$ of the surface.
Suppose all the sheets of the surface are in a generalized plane stressed state, characterized by the following conditions.

1. The stresses and displacements change continuously across the gluing lines of the sheets, while on the unglued edges L^{+}and L^{-}either the normal and shear stresses $\sigma_{y^{+}}, \tau_{x y}{ }^{+}$ and $\sigma_{y^{-}}^{-}, \tau_{x y}^{-}$(the first fundamental problem on the surface R) are specified, or the partial derivtives with respect to x of the displacement components $\left(u^{\prime}, v^{\prime}\right)^{+}$and $\left(u^{\prime}, v^{\prime}\right)^{-}$are specified (the second fundamental problem), or $\sigma_{v}{ }^{+}, \tau_{x y}{ }^{+}$are specified on L^{+}and $\left(u^{\prime}, v^{\prime}\right)^{-}$ are specified on L^{-}(mixed fundamental problem). The specified boundary conditions of the stresses and displacement component derivatives will be assumed to be H-continuous, and in the second problem

$$
\begin{equation*}
\int_{i_{1}}\left[\left(u^{\prime}+i u^{\prime}\right)^{+}-\left(u^{\prime}+i v^{\prime}\right)^{-}\right] d x=0, \quad j=1,2, \ldots, m \tag{1.2}
\end{equation*}
$$

because the displacement increment along the upper edge of cut l_{j} on the plate E_{1} is equal to the displacement increment along the lower edge of the same cut on the plate E_{n}.
2. At the ends of the intervals l_{j}, i.e. at the branch points of the surface, the stress and displacement derivatives can have infinities of order less than unity, while at the remaining points of the intervals they are continuous.
3. At ∞ on the plates $E_{k}(k=1,2, \ldots, n)$ the stresses are uniformly distributed and here the principal stresses $\left(\sigma_{1}\right)_{k}$ and $\left(\sigma_{2}\right)_{k}$ make angles φ_{k} and $\varphi_{k}+\pi / 2$ respectively with the real axis. The rotation of the plate E_{k} at ∞ is equal to ω_{k}.
4. The three-dimensional effect of the stress concentration at the joints of the sheets is assumed to be negligibly small.

Under these conditions the stresses $\left(\sigma_{x}, \sigma_{y}, \tau_{x y}\right)_{k}$ and the x-derivatives of the displacement components $\left(u^{\prime}, v^{\prime}\right)_{k}$ in plate E_{k} are expressed in terms of two functions $\Phi_{k}(z), \Psi_{k}(z)$ by the formulae /3/

$$
\begin{gather*}
\left(\sigma_{x}+\sigma_{y}\right)_{k}=4 \mathrm{Re} \Phi_{k}(z) \tag{1.3}\\
\left(\sigma_{y}-i \tau_{x y}\right)_{k}=\Phi_{k}(z)+\Omega_{k}(\bar{z})+(z-\bar{z}) \overline{\Phi_{k}^{\prime}(z)} \\
2 \mu\left(u^{\prime}+i v^{\prime}\right)_{k}=x \Phi_{k}(z)-\Omega_{k}(\bar{z})-(z-\bar{z}) \overline{\Phi_{k}^{\prime}(z)} \\
\Omega_{k}(z)=\bar{\Phi}_{k}(z)+z \bar{\Phi}_{k}^{\prime}(z)+\bar{\Psi}_{k}(z) \tag{1.4}
\end{gather*}
$$

where μ is the shear modulus, $x=(3-v) /(1+v)$, and v is Poisson's ratio, which are the same for all the plates. The functions Φ_{k}, Ω_{k} are analytic and single-valued in the E_{k} plane with cuts $l_{j}(j=1,2, \ldots, m)$, and in the neighbourhood of ∞ have the form

$$
\begin{gather*}
\Phi_{k}(z)=\gamma_{k}-\frac{P_{k}}{2 \pi(1+x)} \frac{1}{2}+O\left(z^{-2}\right) \tag{1.5}\\
\Omega_{k}(z)=\gamma_{k}^{\prime}+\frac{x P_{k}}{2 \pi(11+x)} \frac{1}{z}+O\left(z^{-2}\right) \\
\gamma_{k}=\frac{1}{4}\left(\sigma_{1}+\sigma_{2}\right)_{k}+\frac{2 i \mu}{1+\varkappa} \omega_{k}, \quad \gamma_{k}^{\prime}=\bar{\gamma}_{k}+\frac{1}{2}\left(\sigma_{2}-\sigma_{1}\right)_{k} \exp \left(2 i \varphi_{k}\right)
\end{gather*}
$$

where $-P_{k}=-\left(X_{k}+i Y_{k}\right)$ is the total force applied to the collection of cuts $l_{j}(j=1,2, \ldots$, m) from the side of plate E_{k}. We assume that the $p_{k}(k=1,2, \ldots, n)$ have been specified, and that for the first problem these numbers and the specified boundary conditions on the stress satisfy the equilibrium condition for the surface R :

$$
\begin{equation*}
\sum_{k=1}^{n} P_{k}+\sum_{j=1}^{m} \int_{i_{j}}\left[\left(\tau_{x y}+i \sigma_{y}\right)^{+}-\left(\tau_{x y}+i \sigma_{y}\right)^{-}\right] d x=0 \tag{1.6}
\end{equation*}
$$

At the ends of the intervals l_{j} the functions Φ_{k}, Ω_{k} can have infinities of order less than unity, while at the other points of the intervals they have continuous boundary values. Furthermore, we suppose that at all points $t \in l_{j}$ except at the ends

$$
\begin{equation*}
(z-\bar{z}) \Phi_{k}^{\prime}(z) \rightarrow 0 \quad \text { for } \quad z \rightarrow t \pm \tag{1.7}
\end{equation*}
$$

In the problems considered below this condition is satisfied as a consequence of the $H-$ continuity of the specified boundary conditions.

Using (1.3), (1.7) the boundary conditions on the edges L^{+}, L^{-}can be written in a unified form for all the problems (L is the set of all intervals $l_{j},(j=1,2, \ldots, m)$):

$$
\begin{equation*}
\rho_{1} \Phi_{1}^{+}(t)+\Omega_{1}^{-}(t)=f_{1}(t), \quad \rho_{2} \Phi_{n}^{-}(t)+\Omega_{n}^{+}(t)=f_{2}(t), \quad t \in L \tag{1,8}
\end{equation*}
$$

Here, in the first problem,

$$
\rho_{1}=\rho_{2}=1, \quad f_{1}=\left(\sigma_{y}-i \tau_{x y}\right)^{+}, \quad f_{2}=\left(\sigma_{y}-i \tau_{x y}\right)^{-}
$$

In the second problem

$$
\rho_{1}=\rho_{2}=-x, \quad f_{1}=-2 \mu\left(u^{\prime}+i v^{\prime}\right)^{+}, \quad f_{2}=-2 \mu\left(u^{\prime}+i v^{\prime}\right)^{-}
$$

In the mixed problem

$$
\rho_{\mathbf{1}}=1, \quad \rho_{2}=-x, \quad f_{1}=\left(\sigma_{y}-i \tau_{x y}\right)^{+}, \quad f_{2}=-2 \mu\left(u^{\prime}+i v^{\prime}\right)^{-}
$$

the continuity of the stresses and displacements along the glue lines of the sheets is described by

$$
\begin{gathered}
\Phi_{k}^{-}(t)+\Omega_{k}^{+}(t)=\Phi_{k+1}^{+}(t)+\Omega_{k+1}^{-}(t) \\
x \Phi_{k}^{-}(t)-\Omega_{k}^{+}(t)=x \Phi_{k+1}^{+}(t)-\Omega_{k+1}^{-}(t), \quad t \in L, k=1,2, \ldots \\
n-1
\end{gathered}
$$

whence

$$
\begin{equation*}
\Phi_{k}^{-}(t)=\Phi_{k+1}^{+}(t), \quad \Omega_{k}^{+}(t)=\Omega_{k+1}^{-}(t), \quad t \in L, k=1,2, \ldots, n-1 \tag{1.9}
\end{equation*}
$$

Thus to find the functions $\Phi_{k}, \Omega_{k}(k=1,2, \ldots, n)$ we have a Riemann matrix boundaryvalue problem (1.8), (1.9) which we write in the form

$$
\begin{equation*}
\Phi^{+}(t)=A \Phi^{-}(t)+f(t), \quad t \in L \tag{1.10}
\end{equation*}
$$

where $\Phi(z)$ is an unknown piecewise-holomorphic vector function of order $2 n$ with components $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}, \Omega_{1}, \Omega_{2}, \ldots, \Omega_{n} ; f(t)$ is a vector function of order $2 n$ with components f_{1} / ρ_{1}, $0,0, \ldots, 0, f_{2} ; A=\left(A_{k i}\right)$ is a matrix of order $2 n \times 2 n$ in which all the elements are zero except $A_{1, n+1}=-1 / \rho_{1}, \quad A_{k, k-1}=1, \quad k=2,3, \ldots, n, \quad A_{k, k+1}=1, k=n+1, n+2, \ldots, 2 n-1, A_{2 n, n}=$ - ρ_{2}. The function $\Phi(z)$ can have infinities of order less than unity at the ends of the lines of L, while from (1.5) it has the form

$$
\begin{equation*}
\Phi(z)=G+H z^{-1}+O\left(z^{-2}\right) \tag{1.11}
\end{equation*}
$$

in a neighbourhood of ∞, G and $2 \pi(1+x) H$ being $2 n$-dimensional vectors with components $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \gamma_{1}^{\prime}, \gamma_{2}^{\prime}, \ldots, \gamma_{n}^{\prime}$ and $-P_{1},-P_{2}, \ldots,-P_{n}, x P_{1}, x P_{2}, \ldots, x P_{n}$ respectively, and $O\left(z^{-2}\right)$ is a vector function all of whose components are comparable with z^{-2} at large z.
2. Solution of the problem. We denote the eigenvalue of the matrix A by $\lambda_{k}(k=1,2, \ldots$, $2 n$), while S is a matrix whose columns are the eigenvectors of A. We straightforwardly find that for the first and second problems

$$
\begin{equation*}
\lambda_{k}=\exp [i \pi(k-1) / n], \quad k=1,2, \ldots, 2 n \tag{2.1}
\end{equation*}
$$

and for the mixed problem

$$
\lambda_{k}=\boldsymbol{x}^{1 / 2 n} \exp [i \pi(2 k-1) /(2 n)]
$$

while for $S=\left(S_{k j}\right)$ we can take the matrix with elements.

$$
\begin{align*}
S_{k j}=\lambda_{j}^{1-k}, k= & 1,2, \ldots, n, S_{k j}=-\rho_{1} \lambda_{j}^{k-n}, k= \tag{2.2}\\
& n+1, n+2, \ldots, 2 n
\end{align*}
$$

Then /4/ the matrix $S^{-1} A S$ is diagonal with diagonal elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n}$. Searching for $\Phi(z)$ in the form $\Phi(z)=S F(z)$ where $F(z)$ is a new unknown vector function with components $F_{1}, F_{2}, \ldots, F_{2 n}$, we obtain from (1.10)

$$
\begin{equation*}
F_{k}^{+}(t)=\lambda_{k} F_{k}^{-}(t)+g_{k}(t), \quad t \in L, k=1,2, \ldots, 2 n \tag{2.3}
\end{equation*}
$$

where the g_{k} are the components of the vector function $S^{-1} f(t)$. At the ends of the lines of L the functions F_{k} can have infinities of order less than unity, while in the neighbourhood
of infinity (1.11) gives

$$
\begin{equation*}
F(z)=\left(F_{k}\right)=S^{-1} \Phi=S^{-1} G+S^{-1} H z^{-1}+O\left(z^{-2}\right) \tag{2.4}
\end{equation*}
$$

According to $/ 5 /$, the solutions of (2.3) are the functions

$$
\begin{gather*}
F_{k}(z)=\mathrm{X}_{k}(z)\left(\frac{1}{2 \pi i} \int_{L} \frac{g_{\mathrm{k}}(t)}{\mathrm{X}_{\mathrm{k}}^{+}(t)} \frac{d t}{t-z}+\sum_{j=0}^{m} c_{k j} z^{s}\right) \tag{2.5}\\
\mathrm{X}_{\mathrm{k}}(z)=\prod_{j=1}^{m}\left(\frac{z-b_{j}}{z-a_{j}}\right)^{\alpha_{k}-i \beta} \frac{1}{z-b_{j}}, \quad k=1,2, \ldots, 2 n
\end{gather*}
$$

where for the first and second problems $\alpha_{k}=(k-1) /(2 n)$ and $\beta=0$, while for the mixed problem $\quad \alpha_{k}=(2 k-1) /(4 n)$ and $\beta=(\ln x) /(4 \pi n)$. Here $X_{k}(z)$ is to be understood as the branch that is single-valued in the plane with cuts along the lines L and such that $z^{m} X_{k}(z) \rightarrow 1$ as $z \rightarrow \infty$. In the first and second problems we must put

$$
\begin{equation*}
\mathrm{X}_{1}(z)=1, \quad c_{11}=c_{12}=\ldots=c_{1 m}=0 \tag{2.6}
\end{equation*}
$$

because $\lambda_{1}=1$.
Using (2.6) in (2.4) and (2.5), we find that in the first and second problems the vector with components $c_{10}, c_{2 m}, c_{3 m}, \ldots, c_{2 n, m}$ is equal to $S^{-1} G$, while the vector with components

$$
\begin{gathered}
-\left(\int_{L} g_{1}(t) d t\right) /(2 \pi i), \quad c_{k, m-1}+q_{k} c_{k m}, \quad k=2,3, \ldots, 2 n \\
\left(q_{k}=\left(\alpha_{k}-i \beta\right)\left(a_{1}+a_{2}+\ldots+a_{m}\right)+\right. \\
\left.\left(1-\alpha_{k}+i \beta\right)\left(b_{1}+b_{2}+\ldots+b_{m}\right)\right)
\end{gathered}
$$

is equal to $S^{-1} H$. The fact that the quantity $-\left(\int g_{1} d t\right) /(2 \pi i)$ is equal to the first component
of the vector $S^{-1} H$ follows in the first problem from condition (1.6), and in the second problem from conditions (1.2). In the mixed problem we find from (2.4) and (2.5) that

$$
\left(c_{k m}\right)_{k=1,2, \ldots, 2 n}=S^{-1} G, \quad\left(c_{k, m-1}+q_{k} c_{k m}\right)_{k=1,2, \ldots, 2 n}=S^{-1} H
$$

where q_{k} is found from the same formulae as for the first and second problems.
Consequently, if the number of cuts $m=1$ all the constants $c_{k j}$ are defined. If $m>1$, then to determine the remaining contants $c_{k j}$ in the first problem one must require the increment of the displacements along a closed curve consisting of the edges of the cuts $l_{j}(j=1,2, \ldots, m-1) \quad$ on each plate $E_{k}(k=1,2, \ldots, n)$ to vanish and the increment of the displacements along the interval $\left[b_{j}, a_{j+1}\right](j=1,2, \ldots, m-1)$ on the plate E_{1} to be equal to the increment of the displacement along the same interval of the plate $\quad E_{k}(k=2$, 3, n). Then

$$
\begin{array}{r}
\sum_{v=1}^{2 n}\left(n S_{k v}+S_{k+n, v}\right) \int_{i_{j}}\left[F_{v}^{+}(t)-F_{v}^{-}(t)\right] d t=0, \quad k=1,2, \ldots, n \\
j=1,2, \ldots, m-1 \\
\sum_{v=1}^{2 n}\left[x\left(S_{i v}-S_{k v}\right)+S_{k+n, v}-S_{n+1, v}\right] \int_{v}^{a_{j+1}} F_{v}(t) d t=0, \quad k-2,3, \ldots, n \tag{2.8}\\
j=1,2, \ldots, m-1
\end{array}
$$

Substituting the values of F_{k} into these equations, we obtain a system of $(2 n-1)(m-1)$ linear algebraic equations to determine the remaining $(2 n-1)(m-1)$ constants $\quad c_{k j}(k=2$, $3, \ldots, 2 n ; j=0,1, \ldots, m-2$), unique solvability being proved by the usual methods $/ 3 /$.

In the second problem one of the group of conditions (2.7), for example for $k=1$, is a consequence of the remaining conditions and conditions (1.2), hence instead of them one should set an additional $m-1$ conditions. They can be obtained if the differences of the displacements of the points b_{j} and a_{j+1}. Then

$$
\begin{gather*}
\sum_{v=1}^{2 n}\left(x S_{1 v}-S_{n+1, v}\right) \int_{b_{j}}^{a_{j+1}} F_{v}(t) d t= \tag{2.9}\\
2 \mu\left[u\left(a_{j+1}\right)+i v\left(a_{j+1}\right)-u\left(b_{j}\right) i v\left(b_{j}\right)\right], \quad j=1,2, \ldots, m-1
\end{gather*}
$$

Instead of the differences of the displacements of points b_{j} and a_{f+1} one can also specify the total external force vector acting on the l_{j}^{+}side in plate E_{1} or the l_{j}^{-}side in plate E_{n}, or on the combined sides l_{j}^{+}in E_{1} and l_{j}^{-}in E_{n}. Then for each $j(j=1,2, \ldots$, $m-1$) one of the following conditions should be satisfied:

$$
\begin{gather*}
\sum_{v=1}^{2 n} \int_{j}\left[S_{1 v} F_{v}{ }^{+}(t)+S_{n+1, v} F_{v}^{-}(t)\right] d t=i Q_{j 1} \tag{2.10}\\
\sum_{v=1}^{2 n} \int_{j}\left[S_{n v} F_{v}^{-}(t)+S_{2 n, v} F_{v^{+}}(t)\right] d t=-i Q_{j n} \tag{2.11}\\
\sum_{v=1}^{2 n} \int_{j}\left[\left(S_{1 v}-S_{2 n, v}\right) F_{v}^{+}(t)+\left(S_{n+1, v}-S_{n v}\right) F_{v}^{-}(t)\right] d t=i Q_{t} \tag{2.12}
\end{gather*}
$$

where $Q_{j 1}, Q_{j n}$ and $Q_{j}=Q_{j 1}+Q_{j n}$ are the total vectors of external forces acting respectively on the l_{j}^{+}side in E_{1}, on the l_{j}^{-}side in E_{n}, and on the combined sides l_{j}^{+}in E_{1} and l_{j}^{-}in E_{n}. Conditions (2.7), where $k=2,3, \ldots, n,(2.8)$ and one of conditions (2.9)(2.12) for each j form a uniquely solvable system of $(2 n-1)(m-1)$ equations to determine the remaining $(2 n-1)(m-1)$ unknown constants $c_{k j}$.

In the mixed problem, to determine the $2 n(m-1)$ constants $c_{k j}(k=1,2, \ldots, 2 n ; j=0$, $1, \ldots, m-2$) one must take conditions (2.7), (2.8) and for each j one of conditions (2.9)(2.12).
3. Behaviour of the stress and displacement near the ends of the cuts. Invariant Γ integrals. For the first and second problems the functions $F_{k}(z)$ near the point $z=b_{j}$ have the form /5/

$$
\begin{gather*}
F_{1}(z)=O\left(\ln \left|z-b_{j}\right|\right) \tag{3.1}\\
F_{k}(z)=D_{k j}\left(z-b_{j}\right)^{\alpha_{k}-1-i \beta}, k=2,3, \ldots, 2 n \tag{3.2}\\
D_{k j}=\eta_{k j}\left(b_{j}\right)\left(\frac{1}{2 \pi i} \int_{L} \frac{g_{k}(t)}{\mathrm{X}_{k}^{+}+(t)} \frac{d t}{t-b_{j}}+\sum_{v=0}^{m} c_{k v} b_{j}^{v}\right) \tag{3.3}\\
\eta_{k j}(z)=\mathrm{X}_{k}(z)\left(z-b_{j}\right)^{1-\alpha_{k}+i \beta}
\end{gather*}
$$

where $\alpha_{k}=(k-1) /(2 n), \beta=0$, the functions X_{k}, g_{k} and the numbers $c_{k v}$ are determined in Sect. 2, while $\left(z-b_{j}\right)^{\alpha_{k}-1-i \beta}$ are single-valued branches in the plane with a cut along the ray $\left(-\infty, b_{j}\right]$ of the real axis, taking the value 1 at $z-b_{j}=1$. The integral in (3.3) is improper.

In the mixed problem all the functions F_{k}, including F_{1}, have the form (3.2), where $\alpha_{k}=(2 k-1) /(4 n) \quad$ and $\quad \beta=(\ln x) /(4 \pi n)$.

Because the vector function $\Phi(z)$ with components $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{n}, \Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}$ is equal to $S F(z)$, from (1.3), (3.1) and (3.2) we obtain for the first and second problems the following asymptotic representations of the stresses and displacement derivatives near the point $z=b_{j}$ in the plane $E_{k}(k=1,2, \ldots, n)$:

$$
\begin{gather*}
\left(\sigma_{x}+\sigma_{y}\right)_{k}=4 \operatorname{Re}\left(\sum_{v=2}^{2 n} S_{k v} D_{v j} \omega_{v j}(z)\right)+O(\ln r) \tag{3.4}\\
\left\{\begin{array}{c}
\left(\sigma_{y}-i \tau_{x y}\right)_{k} \\
2 \mu\left(u^{\prime}+i v^{\prime}\right)_{k}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
x
\end{array}\right\}\left(\sum_{v=2}^{2 n} S_{k v} D_{v j} \omega_{v j}(z)\right)+\left\{\begin{array}{r}
1 \\
-1
\end{array}\right\}\left(\sum _ { v = 2 } ^ { 2 n } \left[S_{k+n, v} D_{v j} \omega_{v j}(\bar{z})+\right.\right. \\
\left.\left.\left.\left(\alpha_{k}+i \beta\right) \bar{S}_{k v} \bar{D}_{v j}\left(1-\left(z-b_{j}\right) /\left(z-b_{j}\right)\right)\right) \omega_{v j}(z)\right]\right)+O(\ln r) \\
r=\left|z-b_{j}\right|, \quad \omega_{v j}(z)=\left(z-b_{j}\right)^{\alpha_{k}-1-i \beta}, \quad \alpha_{k}=(k-1) /(2 n), \beta=0
\end{gather*}
$$

The constants $S_{k j}$ and $D_{v j}$ are given by formulae (2.1), (2.2), and (2.3), respectively, for the mixed problem all the sums over v in these representations must be taken from 1 to $2 n$, and we must put $\alpha_{k}=(2 k-1) /(4 n)$ and $\beta=(\ln x) /(4 \pi n)$. In order to obtain representations near the point $z=a_{j}$ on the plate E_{k}, one must replace b_{j} with a_{j} and $\alpha_{k}-1-i \beta$ with $i \beta-\alpha_{k}$ in formulae (3.1)-(3.4).

For the $n=1$ case of (3.4) we obtain previously known representations of stresses and displacement derivatives near the vertices of cracks and rigid sharp-angled inclusions /6/by denoting the constant $2 \sqrt{2} \rho_{1} D_{2 j}$ by $k_{1}-i k_{2}\left(k_{1}\right.$ and k_{2} being coefficients of the stress intensity).

For the first and second problems we compute the invariant Γ-integral of the first
kind / / / along a curve consisting of n identical circles Λ of small radius $r(r \leqslant 1)$ with centres at the points $z=b_{j}$, positioned on the plates $E_{\mathrm{k}}(k=1,2, \ldots, n)$. Consistent with formula (2.7), from $/ 7 /$ we have, using relation (1.4),

$$
\Gamma=\Gamma_{1}+i \Gamma_{2}=\frac{i(x+1)}{2 \mu} \sum_{k=1}^{n}\left(\int_{\Lambda} \Omega_{k}(\bar{z}) \overline{\Phi_{k}(z) d z}-\operatorname{Re} \int_{\Lambda} \Phi_{k}^{2}(z) d z\right)
$$

Because

$$
\Phi_{k}=\sum_{v=1}^{2 n} S_{k v} F_{v}, \quad \Omega_{k}=\sum_{v=1}^{2 n} S_{k+n, v} F_{v}
$$

then using (3.1), (3.2) and integrating using polax coordinates given by $z-b_{j}=r e^{i \theta},-\pi \leqslant$ $\theta \leqslant \pi$, we find

$$
\begin{equation*}
\Gamma_{1}=-\frac{\pi n(x+1) \rho_{1}}{\mu} \operatorname{Re}\left(\sum_{v=2}^{2 n} e^{i \pi(v-1) / n} D_{v j} D_{2 n+2-v, j}\right) \tag{3.5}
\end{equation*}
$$

where $\rho_{1}=1$ in the first problem and $\rho_{1}=-x$ in the second, while the $D_{v j}$ are defined by formulae (3.3). The Γ_{2} component has the form

$$
\Gamma_{2}^{\prime}=\xi_{0}+\xi_{1} r^{-1 /(2 n)}+\xi_{2} r^{-2 /(2 n)}+\ldots+\xi_{2 n-2} r^{r-(2 n-2) /(2 n)}
$$

where the ξ_{k} are some generally non-zero constants.
For $n=1$, denoting $2 \sqrt{2 \pi} \rho_{1} D_{2 j}$ by $k_{1}-i k_{2}$, we obtain from (3.5) the well-known formula /l/

$$
\Gamma_{1}=\operatorname{Re} \Gamma=(x+1)\left(k_{1}^{2}+k_{2}^{2}\right) /\left(8 \mu \rho_{1}\right)
$$

where in the first problem $\rho_{1}=1$ and in the second $\rho_{1}=-x$.
I wish to thank D.D. Ivlev for his interest.

REFERENCES

1. CHEREPANOV G.P., Invariant r-integrals and some of their applications in mechanics, Prikl. Mat. Mekh., 41, 3, 1977.
2. SIL'VESTROV V.V., The first and second fundamental problems of elasticity theory on a twosheeted Riemann surface, Boundary-Value Problems and their Applications, Izd-vo Chubash. Un-ta, Cheboksary, 1986.
3. MUSKHELISHVILI N.I., Some Fundamental Problems of the Mathematical Theory, of Elasticity, Nauka, Moscow, 1966.
4. SMIRNOV V.I., Course of Higher Mathematics, 3, Pt.1 Nauka, Moscow, 1974.
5. MUSKHELISHVILI N.I., Singular Integral Equations, Nauka, Moscow, 1968.
6. BEREZHNITSKII L.T., PANASYUK V.V. and STASHCHUK N.G., The Interaction of Rigid Linear Inclusions and Cracks in Deformed Bodies, Nauk. Dumka, Kiev, 1983.
7. CHEREPANOV G.P., Fracture Mechanics of Composite Materials, Nauka, Moscow, 1983.

[^0]: "PrikZ.Matem.Mekhan., 55,3,493-499,1991

